Friday 27 March 2015

Bio Fuels: A fuel for future growth of India


Biofuel development in India centres mainly around the cultivation and processing of Jatropha plant seeds which are very rich in oil (40%). The drivers for this are historic, functional, economic, environmental, moral and political. Jatropha oil has been used in India for several decades as biodiesel for the diesel fuel requirements of remote rural and forest communities; jatropha oil can be used directly after extraction (i.e. without refining) in diesel generators and engines. Jatropha has the potential to provide economic benefits at the local level since under suitable management it has the potential to grow in dry marginal non-agricultural lands, thereby allowing villagers and farmers to leverage non-farm land for income generation. As well, increased Jatropha oil production delivers economic benefits to India on the macroeconomic or national level as it reduces the nation's fossil fuel import bill for diesel production (the main transportation fuel used in the country); minimising the expenditure of India's foreign-currency reserves for fuel allowing India to increase its growing foreign currency reserves (which can be better spent on capital expenditures for industrial inputs and production). And since Jatropha oil is carbon-neutral, large-scale production will improve the country's carbon emissions profile. Finally, since no food producing farmland is required for producing this biofuel (unlike corn or sugar cane ethanol, or palm oil diesel), it is considered the most politically and morally acceptable choice among India's current biofuel options; it has no known negative impact on the production of the massive amounts grains and other vital agriculture goods India produces to meet the food requirements of its massive population (circa 1.1 Billion people as of 2008). Other biofuels which displace food crops from viable agricultural land such as corn ethanol or palm biodiesel have caused serious price increases for basic food grains and edible oils in other countries.
India's total biodiesel requirement is projected to grow to 3.6 million tonnes in 2011–12, with the positive performance of the domestic automobile industry. Analysis from Frost & Sullivan, Strategic Analysis of the Indian Biofuels Industry, reveals that the market is an emerging one and has a long way to go before it catches up with global competitors. The Government is currently implementing an ethanol-blending program and considering initiatives in the form of mandates for biodiesel. Due to these strategies, the rising population, and the growing energy demand from the transport sector, biofuels can be assured of a significant market in India. On 12 September 2008, the Indian Government announced its 'National Biofuel Policy’. It aims to meet 20% of India's diesel demand with fuel derived from plants. That will mean setting aside 140,000 square kilometres of land. Presently fuel yielding plants cover less than 5,000 square kilometres. Biodiesel is a safe alternative fuel to replace traditional petroleum diesel. It has high-lubricity, is a clean-burning fuel and can be a fuel component for use in existing, unmodified diesel engines. This means that no retrofits are necessary when using biodiesel fuel in any diesel powered combustion engine. It is the only alternative fuel that offers such convenience. Biodiesel acts like petroleum diesel, but produces less air pollution, comes from renewable sources, is biodegradable and is safer for the environment. Producing biodiesel fuels can help create local economic revitalization and local environmental benefits. Many groups interested in promoting the use of biodiesel already exist at the local, state and national level. Biodiesel is designed for complete compatibility with petroleum diesel and can be blended in any ratio, from additive levels to 100 percent biodiesel. In the United States today, biodiesel is typically produced from soybean or rapeseed oil or can be reprocessed from waste cooking oils or animal fats such as waste fish oil. Because it is made of these easily obtainable plant-based materials, it is a completely renewable fuel source. BENEFITS OF BIODIESEL Biodiesel can be considered a new technology, taking into account all the years consumers have had to settle for traditional diesel. 1. Biodiesel is not harmful to the environment. A vehicle tends to pollute the environment and emits harmful gasses, if injected with HSD whereas if the engine is using biodiesel it emits no harmful gasses rather keeps the environment pollution free. 2. Biodiesel may not require an engine modification. Biodiesel can be blended with diesel so as to improve the efficiency of the engine without any hassles. 3. Biodiesel is cheap. You can even make biodiesel in your backyard. If your engine can work with biodiesel fuel alone, then you really need not go to the gas station to buy fuel. You can just manufacture some for your own personal use. 4. Any Vehicle using Biodiesel has very low idle stating noise. It is noted that biodiesel has a Cetane number of over 100. Cetane number is used to measure the quality of the fuel’s ignition. If your fuel has a high Cetane number, you can be sure that what you get is a very easy cold starting coupled with a low idle noise. 5. Biodiesel is cost effective because it is produced locally. Biodiesel as a fuel not only helps reducing the pollution, reduces health hazards and gives our society A CLEANER AND GREENER TOMORROW. Advantages of using Biodiesel 1. Easy to use: Biodiesel can be used in existing engines, vehicles and infrastructure with practically no changes. Biodiesel can be pumped, stored and burned just like petroleum diesel fuel, and can be used pure, or in blends with petroleum diesel fuel in any proportion. Power and fuel economy using biodiesel is practically identical to petroleum diesel fuel, and year round operation can be achieved by blending with diesel fuel. 2. Power & Performance: The degree to which fuel provides proper lubrication is its lubricity. Low lubricity petroleum diesel fuel can cause premature failure of injection system components and decreased performance. Biodiesel provides excellent lubricity to the fuel injection system. 3. Emissions & Greenhouse Gas Reduction: Biodiesel provides significantly reduced emissions of carbon monoxide, particulate matter, unburned hydrocarbons, and sulfates compared to petroleum diesel fuel. Additionally, biodiesel reduces emissions of carcinogenic compounds by as much as 85% compared with petro diesel. When blended with petroleum diesel fuel, these emissions reductions are generally directly proportional to the amount of biodiesel in the blend.

No comments:

Post a Comment