A solar pond is a pool of saltwater which acts as a large-scale solar thermal energy collector with integral heat storage for supplying thermal energy. A solar pond can be used for various applications, such as process heating, desalination, refrigeration, drying and solar power generation.
A solar pond is simply a pool of saltwater which collects and stores solar thermal energy. The saltwater naturally forms a vertical salinity gradient also known as a "halocline", in which low-salinity water floats on top of high-salinity water. The layers of salt solutions increase in concentration (and therefore density) with depth. Below a certain depth, the solution has a uniformly high salt concentration.
There are 3 distinct layers of water in the pond:
• The top layer, which has a low salt content.
• An intermediate insulating layer with a salt gradient, which establishes a density gradient that prevents heat exchange by natural convection.
• The bottom layer, which has a high salt content.
If the water is relatively translucent, and the pond's bottom has high optical absorption, then nearly all of the incident solar radiation (sunlight) will go into heating the bottom layer.
When solar energy is absorbed in the water, its temperature increases, causing thermal expansion and reduced density. If the water were fresh, the low-density warm water would float to the surface, causing a convection current. The temperature gradient alone causes a density gradient that decreases with depth. However the salinity gradient forms a density gradient that increases with depth, and this counteracts the temperature gradient, thus preventing heat in the lower layers from moving upwards by convection and leaving the pond. This means that the temperature at the bottom of the pond will rise to over 90 °C while the temperature at the top of the pond is usually around 30 °C. A natural example of these effects in a saline water body is Solar Lake in the Sinai Peninsula of Egypt.
The heat trapped in the salty bottom layer can be used for many different purposes, such as the heating of buildings or industrial hot water or to drive an organic Rankine cycleturbine or Stirling engine for generating electricity.
Salinity-gradient solar ponds can collect and store solar heat at temperatures up to 80 °C. As a result, these water bodies act as a renewable source of low grade heat which can be utilized for heating and power generation applications. In this paper, design and test result of the combined system of thermosyphon and thermoelectric modules (TTMs) for the generation of electricity from low grade thermal sources like solar pond is discussed. In solar ponds, temperature difference in the range 40–60 °C is available between the lower convective zone (LCZ) and the upper convective zone (UCZ) which can be applied across the hot and cold surfaces of the thermoelectric modules to make it work as a power generator. The designed system utilizes gravity assisted thermosyphon to transfer heat from the hot bottom to the cold top of the solar pond. Thermoelectric cells (TECs) are attached to the top end of the thermosyphon which lies in the UCZ thereby maintaining differential temperature across them. A laboratory scale model based on the proposed combination of thermosyphon and thermoelectric cells was fabricated and tested under the temperature differences that exist in the solar ponds. Result outcomes from the TTM prototype have indicated significant prospects of such system for power generation from low grade heat sources particularly for remote area power supply. A potential advantage of such a system is its ability to continue to provide useful power output at night time or on cloudy days because of the thermal storage capability of the solar pond.
Advantages and disadvantages
• The approach is particularly attractive for rural areas in developing countries. Very large area collectors can be set up for just the cost of the clay or plastic pond liner.
• The evaporated surface water needs to be constantly replenished.
• The accumulating salt crystals have to be removed and can be both a valuable by-product and a maintenance expense.
• No need of a separate collector for this thermal storage system.
Efficiency
The energy obtained is in the form of low-grade heat of 70 to 80 °C compared to an assumed 20 °C ambient temperature. According to the second law of thermodynamics (seeCarnot-cycle), the maximum theoretical efficiency of a cycle that uses heat from a high temperature reservoir at 80 °C and has a lower temperature of 20 °C is 1−(273+20)/(273+80)=17%. By comparison, a power plant's heat engine delivering high-grade heat at 800 °C would have a maximum theoretical limit of 73% for converting heat into useful work (and thus would be forced to divest as little as 27% in waste heat to the cold temperature reservoir at 20 °C). The low efficiency of solar ponds is usually justified with the argument that the 'collector', being just a plastic-lined pond, might potentially result in a large-scale system that is of lower overall levelised energy cost than a solar concentrating system.
Guy gets almost killed for revealing how to generate electricity from Earth's Magnetic Core
ReplyDeleteLadies and gentlemen you won’t believe what just happened:
This crazy guy has discovered how to transform Earth's Magnetic Core Energy into electricity.
The beauty is that he figured out a clever way (yet dump simple) on how to power your home for 21 hours without interruption.
>> Here's The Video Proof <<
Rumor has it that the inventor was about to get killed for this secret as some bad guys wanted to steal his invention and get rich quickly.
Fortunately, he managed to escape and he's now finally able to reveal his story in the video below:
>> Click Here <<
From what I heard this video can be taken down by the end of the day... so I advice you to watch it right now while you still can.