Tuesday 10 March 2015

Geothermal Energy: A brief Overview


Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma. Almost everywhere, the shallow ground or upper 10 feet of the Earth's surface maintains a nearly constant temperature between 50° and 60°F (10° and 16°C). Geothermal heat pumps can tap into this resource to heat and cool buildings. A geothermal heat pump system consists of a heat pump, an air delivery system (ductwork), and a heat exchanger-a system of pipes buried in the shallow ground near the building. In the winter, the heat pump removes heat from the heat exchanger and pumps it into the indoor air delivery system. In the summer, the process is reversed, and the heat pump moves heat from the indoor air into the heat exchanger. The heat removed from the indoor air during the summer can also be used to provide a free source of hot water. In the United States, most geothermal reservoirs of hot water are located in the western states, Alaska, and Hawaii. Wells can be drilled into underground reservoirs for the generation of electricity. Some geothermal power plants use the steam from a reservoir to power a turbine/generator, while others use the hot water to boil a working fluid that vaporizes and then turns a turbine. Hot water near the surface of Earth can be used directly for heat. Direct-use applications include heating buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes such as pasteurizing milk. Hot dry rock resources occur at depths of 3 to 5 miles everywhere beneath the Earth's surface and at lesser depths in certain areas. Access to these resources involves injecting cold water down one well, circulating it through hot fractured rock, and drawing off the heated water from another well. Currently, there are no commercial applications of this technology. Existing technology also does not yet allow recovery of heat directly from magma, the very deep and most powerful resource of geothermal energy. Most power plants need steam to generate electricity. The steam rotates a turbine that activates a generator, which produces electricity. Many power plants still use fossil fuels to boil water for steam. Geothermal power plants, however, use steam produced from reservoirs of hot water found a couple of miles or more below the Earth's surface. There are three types of geothermal power plants:dry steam, flash steam, and binary cycle. Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant, where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's a well-known geyser called Old Faithful. Since Yellowstone is protected from development, the only dry steam plants in the country are at The Geysers. Flash steam power plants are the most common. They use geothermal reservoirs of water with temperatures greater than 360°F (182°C). This very hot water flows up through wells in the ground under its own pressure. As it flows upward, the pressure decreases and some of the hot water boils into steam. The steam is then separated from the water and used to power a turbine/generator. Any leftover water and condensed steam are injected back into the reservoir, making this a sustainable resource. Binary cycle power plants operate on water at lower temperatures of about 225°-360°F (107°-182°C). These plants use the heat from the hot water to boil a working fluid, usually an organic compound with a low boiling point. The working fluid is vaporized in a heat exchanger and used to turn a turbine. The water is then injected back into the ground to be reheated. The water and the working fluid are kept separated during the whole process, so there are little or no air emissions. Small-scale geothermal power plants (under 5 megawatts) have the potential for widespread application in rural areas, possibly even as distributed energy resources. Distributed energy resources refer to a variety of small, modular power-generating technologies that can be combined to improve the operation of the electricity delivery system. When a person takes a hot bath, the heat from the water will usually warm up the entire bathroom. Geothermal reservoirs of hot water, which are found a couple of miles or more beneath the Earth's surface, can also be used to provide heat directly. This is called the direct use of geothermal energy. Geothermal direct use dates back thousands of years, when people began using hot springs for bathing, cooking food, and loosening feathers and skin from game. Today, hot springs are still used as spas. But there are now more sophisticated ways of using this geothermal resource. In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady stream of hot water. The water is brought up through the well, and a mechanical system - piping, a heat exchanger, and controls - delivers the heat directly for its intended use. A disposal system then either injects the cooled water underground or disposes of it on the surface. Geothermal hot water can be used for many applications that require heat. Its current uses include heating buildings (either individually or whole towns), raising plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes, such as pasteurizing milk. With some applications, researchers are exploring ways to effectively use the geothermal fluid for generating electricity as well. The shallow ground, the upper 10 feet of the Earth, maintains a nearly constant temperature between 50° and 60°F (10°-16°C). Like a cave, this ground temperature is warmer than the air above it in the winter and cooler than the air in the summer. Geothermal heat pumps take advantage of this resource to heat and cool buildings. Geothermal heat pump systems consist of basically three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is basically a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of water and antifreeze) circulates through the pipes to absorb or relinquish heat within the ground. In the winter, the heat pump removes heat from the heat exchanger and pumps it into the indoor air delivery system. In the summer, the process is reversed, and the heat pump moves heat from the indoor air into the heat exchanger. The heat removed from the indoor air during the summer can also be used to heat water, providing a free source of hot water. Geothermal heat pumps use much less energy than conventional heating systems, since they draw heat from the ground. They are also more efficient when cooling your home. Not only does this save energy and money, it reduces air pollution.

1 comment:

  1. Crazy Nurse Steals The Secret That Big Energy Companies Wanted Buried (SHOCKING)

    There are a few simple people that deserve the Medal Of Honor even though they were not in the army... or shared blood on the battle ground.

    I'm talking about people like this "CRAZY" nurse who discovered one of the biggest secrets of the mankind... and preferred to share it to community instead of getting millions of dollars for keeping it secret. We're talking about a secret plan that can produce free energy: 
    >> Watch And Cry (Click Here)

    It's the same device that was used with great success by the US navy to propel their ships for millions of miles... without any fuel... and that big energy fat cats almost started another war for… just to hide it from the public.

    >> Here's The Proof <<

    For them it would have meant billions of dollars lost... money that you, I and the rest of the Americans paid for tens of years as electricity bills.



    TV’s don't want to talk about it (although they may already know about all the info I'm sharing with you today)... politicians are busy with the North Korea situation... and you're lead to believe that it's normal to pay hundreds of dollars every single month for electricity... when all this time you would have gotten it for free.

    Here's what is all about:

    >> The Video That Will Change Your Life <<
    Say a prayer, kiss your loved ones because from today you're entering into a new world. A world of free energy.

    P.S. More than 80,173 people have already watched the video...and I'm receiving tens of emails everyday telling me how they are slashing their power bills... in less than 30 days.

    >> Click Here To Find Out What It Is About << 

    ReplyDelete