Showing posts with label Physical Modelling. Show all posts
Showing posts with label Physical Modelling. Show all posts

Thursday, 16 April 2015

Smart metering Technology for smart housing


A smart meter is usually an electronic device that records consumption of electric energy in intervals of an hour or less and communicates that information at least daily back to the utility for monitoring and billing.[7] Smart meters enable two-way communication between the meter and the central system. Unlike home energy monitors, smart meters can gather data for remote reporting. Such an advanced metering infrastructure (AMI) differs from traditional automatic meter reading (AMR) in that it enables two-way communications with the meter. Smart Meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. For over fifteen years electronic meters, have been used effectively by utilities in delivering accurate billing data for at least a portion of their customer base. Initially, the use of this technology was applied to commercial and industrial customers due to the need for more sophisticated rates and more granular billing data requirements. The use of electronic meters came into service to the largest customers of the utility and over time gradually expanded to all customer classes. This migration was made possible by decreasing cost of the technology and advanced billing requirements for all customer classes. The combination of the electronic meters with two-way communications technology for information, monitor, and control is commonly referred to as Advanced Metering infrastructure (AMI). Previous systems, which utilized one-way communications to collect meter data were referred to as AMR (Automated Meter Reading) Systems. AMI has developed over time, from its roots as a metering reading substitute (AMR) to today’s two-way communication and data system. Not until the Smart Grid initiatives were established were these meters and systems referred to as ―Smart Meters and Smart Meter Systems‖. Hence, the present state of these technologies should be more appropriately referred to as ―an evolution, not a revolution‖ because of the development and use of Smart Meter technology and communications over the last fifteen years. The combined technologies are also required to meet national standards for accuracy and operability essential in the industry. Utility Customers Better access and data to manage energy use More accurate and timely billing Improved and increased rate options Improved outage restoration Power quality data Customer Service & Field Operations Reduced cost of Metering reading Reduced trips for off-cycle reads Eliminates handheld meter reading equipment Reduced call center transactions Reduced collections and connects/disconnects Revenue Cycle Services - Billing, Accounting, Revenue Protection Reduced back office rebilling Early detection of meter tampering and theft Reduced estimated billing and billing errors Transmission and Distribution Improved transformer load management Improved capacitor bank switching Data for improved efficiency, reliability of service, losses, and loading Improved data for efficient grid system design Power quality data for the service areas Marketing & Load Forecasting Reduced costs for collecting load research data The Role of Utility Metering Operations Metering Services operations in utilities have traditionally been tasked with providing customer billing measurement and have been responsible for accuracy, precision, and robust operations of the meters and support devices. Using a national system of standards, formal quality processes, utility best practices, and a dedicated sense of purpose, utility metering professionals have strived to produce the best system for billing utility customers in the global electric industry. In joint partnership with meter and communications manufacturers, they have driven the development of electronic metering and metering communications to deliver the top notch Smart Metering Systems available in the marketplace today. For successful Smart Meter projects, Metering Services operations are an integral part of the project planning, deployment and maintenance of the systems. Their contributions in these areas of the process are required and fundamental to the project success. The most important contributions include: Development of the Business and Technical requirements of the Systems, Participant of the technology selection team, Certification of the system meters and devices, Acceptance of the incoming production products, Development of safe and appropriate installation plans and processes, Development of a maintenance model to support the new systems, Development of training programs , Design and implementation of an appropriate In-Service Testing & Compliance process With the significant increase of new measurement technologies and integration of communication systems into basic meters, metering operations will be challenged both technically and operationally in the near and long term. The emphasis on metering operations in utilities will increase as more sophisticated billing and measurement systems are developed, designed and deployed. The Smart Grid and Smart Meter Systems Smart Meter Systems are an integral part of the Smart Grid infrastructure in data collection and communications. The Smart Grid is essentially the modernization of the transmission and distribution aspects of the electrical grid. Functionally, it is an automated electric power system that monitors and controls grid activities, ensuring the efficient and reliable two-way flow of electricity and information between power plants and consumers—and all points in between. A Smart Grid monitors electricity delivery and tracks power consumption with smart meters that transmit energy usage information to utilities via communication networks. Smart meters also allow the customers to track their own energy use. Basic Types of Smart Meter Systems There are two basic categories of Smart Meter System technologies as defined by their LAN. They are Radio Frequency (RF) and Power Line Carrier (PLC). Each of these technologies has its own advantages and disadvantages in application. The utility selects the best technology to meet its demographic and business needs. Factors that impact the selection of the technology include evaluation of existing infrastructure; impact on legacy equipment, functionality, technical requirements as well has the economic impact to the utility’s customers. The selection of the technology requires a thorough evaluation and analysis of existing needs and future requirements into a single comprehensive business case. Radio Frequency – RF Smart Meter measurements and other data are transmitted by wireless radio from the meter to a collection point. The data is then delivered by various methods to the utility data systems for processing at a central location. The utility billing, outage management, and other systems use the data for operational purposes. RF technologies are usually two different types: Mesh Technology The smart meters talk to each other (hop) to form a LAN cloud to a collector. The collector transmits the data using various WAN methods to the utility central location. – Mesh RF Technologies’ advantages include acceptable latency, large bandwidth, and typically operate at 9157 MHz frequencies. – Mesh technologies disadvantages include terrain and distance challenges for rural areas, proprietary communications, and multiple collection points. Point to Point Technology The smart meters talk directly to a collector, usually a tower. The tower collector transmits the data using various methods to the utility central location for processing. – Point to Point RF technologies advantages include little or no latency, direct communication with each endpoint, large bandwidth for better throughput, some are licensed spectrum, and can cover longer distances. – The disadvantages of point to point RF networks are licensing (not for 900MHz), terrain may prove challenging in rural areas (Line of Sight), proprietary communications used for some technologies, and less interface with DA devices Power Line Carrier - PLC Smart Meter measurements and other data can be transmitted across the utility power lines from the meter to a collection point, usually in the distribution substation feeding the meter. Some solutions have the collection point located on the secondary side of a distribution transformer. The data is then delivered to the utility data systems for processing at a central location. The utility billing, outage management, and other systems use the data for operational purposes. PLC technology advantages include leveraging the use of existing utility infrastructure of poles & wires, improved cost effectiveness for rural lines, more effective in challenging terrain, and the capability to work over long distances. PLC disadvantages include longer data transmit time (more latency), less bandwidth and throughput, limited interface with Distribution Automation (DA) devices , and higher cost in urban and suburban locations. There are other Smart Meter Systems in use that differ from those described above. However, these are generally a hybrid or combination design, a slight variation of the basic types, or niche products. The major Smart Meter System Technologies in use today are of one of these basic types.

Sunday, 12 April 2015

AC voltage controllers performance and applications


A voltage controller, also called an AC voltage controller or AC regulator is an electronic module based on either thyristors, TRIACs,SCRs or IGBTs, which converts a fixed voltage, fixed frequency alternating current (AC) electrical input supply to obtain variable voltage in output delivered to a resistive load. This varied voltage output is used for dimming street lights, varying heating temperatures in homes or industry, speed control of fans and winding machines and many other applications, in a similar fashion to an autotransformer. AC voltage controllers (ac line voltage controllers) are employed to vary the RMS value of the alternating voltage applied to a load circuit by introducing Thyristors between the load and a constant voltage ac source. The RMS value of alternating voltage applied to a load circuit is controlled by controlling the triggering angle of the Thyristors in the ac voltage controller circuits. In brief, an ac voltage controller is a type of thyristor power converter which is used to convert a fixed voltage, fixed frequency ac input supply to obtain a variable voltage ac output. The RMS value of the ac output voltage and the ac power flow to the load is controlled by varying (adjusting) the trigger angle ‘’ The ac voltage controllers are classified into two types based on the type of input ac supply applied to the circuit.  Single Phase AC Controllers.  Three Phase AC Controllers. Single phase ac controllers operate with single phase ac supply voltage of 230V RMS at 50Hz in our country. Three phase ac controllers operate with 3 phase ac supply of 400V RMS at 50Hz supply frequency. Each type of controller may be sub divided into  Uni-directional or half wave ac controller.  Bi-directional or full wave ac controller. In brief different types of ac voltage controllers are  Single phase half wave ac voltage controller (uni-directional controller).  Single phase full wave ac voltage controller (bi-directional controller).  Three phase half wave ac voltage controller (uni-directional controller).  Three phase full wave ac voltage controller (bi-directional controller). APPLICATIONS OF AC VOLTAGE CONTROLLERS  Lighting / Illumination control in ac power circuits.  Induction heating.  Industrial heating & Domestic heating.  Transformers tap changing (on load transformer tap changing).  Speed control of induction motors (single phase and poly phase ac induction motor control).  AC magnet controls. 4. AC VOLTAGE CONTROL TECHNIQUES There are two different types of thyristor control used in practice to control the ac power flow  Phase control  On-Off control These are the two ac output voltage control techniques. In On-Off control technique Thyristors are used as switches to connect the load circuit to the ac supply (source) for a few cycles of the input ac supply and then to disconnect it for few input cycles. The Thyristors thus act as a high speed contactor (or high speed ac switch). 4.1 PHASE CONTROL TECHNIQUE In phase control the Thyristors are used as switches to connect the load circuit to the input ac supply, for a part of every input cycle. That is the ac supply voltage is chopped using Thyristors during a part of each input cycle. The thyristor switch is turned on for a part of every half cycle, so that input supply voltage appears across the load and then turned off during the remaining part of input half cycle to disconnect the ac supply from the load. By controlling the phase angle or the trigger angle ‘’ (delay angle), the output RMS voltage across the load can be controlled. The trigger delay angle ‘’ is defined as the phase angle (the value of t) at which the thyristor turns on and the load current begins to flow. Thyristor ac voltage controllers use ac line commutation or ac phase commutation. Thyristors in ac voltage controllers are line commutated (phase commutated) since the input supply is ac. When the input ac voltage reverses and becomes negative during the negative half cycle the current flowing through the conducting thyristor decreases and falls to zero. Thus the ON thyristor naturally turns off, when the device current falls to zero. Phase control Thyristors which are relatively inexpensive, converter grade Thyristors which are slower than fast switching inverter grade Thyristors are normally used. For applications up to 400Hz, if Triacs are available to meet the voltage and current ratings of a particular application, Triacs are more commonly used. Due to ac line commutation or natural commutation, there is no need of extra commutation circuitry or components and the circuits for ac voltage controllers are very simple. Due to the nature of the output waveforms, the analysis, derivations of expressions for performance parameters are not simple, especially for the phase controlled ac voltage controllers with RL load. But however most of the practical loads are of the RL type and hence RL load should be considered in the analysis and design of ac voltage controller circuits. PRINCIPLE OF ON-OFF CONTROL TECHNIQUE (INTEGRAL CYCLE CONTROL) The basic principle of on-off control technique is explained with reference to a single phase full wave ac voltage controller circuit shown below. The thyristor switches and are turned on by applying appropriate gate trigger pulses to connect the input ac supply to the load for ‘n’ number of input cycles during the time interval . The thyristor switches and are turned off by blocking the gate trigger pulses for ‘m’ number of input cycles during the time interval . The ac controller ON time usually consists of an integral number of input cycles. Referring to the waveforms of ON-OFF control technique in the above diagram, Two input cycles. Thyristors are turned ON during for two input cycles. One input cycle. Thyristors are turned OFF during for one input cycle Thyristors are turned ON precisely at the zero voltage crossings of the input supply. The thyristor is turned on at the beginning of each positive half cycle by applying the gate trigger pulses to as shown, during the ON time . The load current flows in the positive direction, which is the downward direction as shown in the circuit diagram when conducts. The thyristor is turned on at the beginning of each negative half cycle, by applying gating signal to the gate of , during . The load current flows in the reverse direction, which is the upward direction when conducts. Thus we obtain a bi-directional load current flow (alternating load current flow) in a ac voltage controller circuit, by triggering the thyristors alternately. This type of control is used in applications which have high mechanical inertia and high thermal time constant (Industrial heating and speed control of ac motors). Due to zero voltage and zero current switching of Thyristors, the harmonics generated by switching actions are reduced.

Sunday, 5 April 2015

Engineering projects: Research and consultancy for programming, Physical modelling and simulation, Report publishing


MATLAB® is a high-performance technical computing language. It has an incredibly rich variety of functions and is often referred to as the Bible due to its vast programming capabilities. In MATLAB, computation, visualization, and programming are integrated such that the data can be expressed in a familiar mathematical notation. Evolved over many years with constant inputs from various users, it is now being widely used as a programming language for scientific and technical computation. One can perform powerful operations in MATLAB by using simple commands. Hence, writing programs in MATLAB is easier compared to other high-level languages such as FORTRAN or C. Users can even build their own set of functions for a particular application. It is an interactive system in which the basic data element is an array. MATLAB is used as a standard tool in various introductory and advanced courses of almost all streams of engineering. It is used as a tool for analysis, modeling and simulation, and for high productive research and development activities. It can be used for various functions such as mathematical computation, algorithm development, data acquisition, modeling, simulation, prototyping, data analysis, exploration, visualization, and engineering graphics development as well as building graphical user interface. SIMULINK is a software package for modeling, simulating, and analysing dynamic systems. MATLAB and SIMULINK are integrated and one can simulate, analyse, or revise the models in either environment. MATLAB also features a family of add-on application-specific features called toolboxes in SIMULINK. These toolboxes can be used for modeling and simulation of specialized technology in a real-time environment. This book attempts to train engineering students of different streams to use the functions and toolboxes of MATLAB and SIMULINK for the study, design, and analysis of different electrical circuits and systems. All these toolboxes can be used to build a real-time prototype of the system. Here you will directly speak to the expert, find a solution to your need or problem and save your valuable time and effort for future end-overs. Genuine advice and consultancy regarding an engineering project is provided here on reasonable consultant charges. The expert himself has vast experience of 15 years and has executed more than 500+ projects at various international universities as a professional.Also for some selected projects report can also be provided on reasonable charges on request.

Saturday, 4 April 2015

Switch Reluctance Motor drive for real time applications


The switched reluctance motor (SRM) is a type of a stepper motor, an electric motor that runs by reluctance torque. Unlike common DC motor types, power is delivered to windings in the stator (case) rather than the rotor. This greatly simplifies mechanical design as power does not have to be delivered to a moving part, but it complicates the electrical design as some sort of switching system needs to be used to deliver power to the different windings. With modern electronic devices, precisely timed switching is not a problem, and the SRM (Switched Reluctance Motor) is a popular design for modern stepper motors. Its main drawback is torque ripple. An alternate use of the same mechanical design is as a generator when driven mechanically, and the load is switched to the coils in sequence to synchronize the current flow with the rotation. Such generators can be run at much higher speeds than conventional types as the armature can be made as one piece of magnetisable material, a simple slotted cylinder . In this case use of the abbreviation SRM is extended to mean Switched Reluctance Machine, although SRG, Switched Reluctance Generator is also used. A topology that is both motor and generator is useful for starting the prime mover, as it saves a dedicated starter motor. The synchronous reluctance motor has many advantages over other ac motors. For example, its structure is simple and rugged. In addition, its rotor does not have any winding or magnetic material. Prior to twenty years ago, the SynRM was regarded as inferior to other types of ac motors due to its lower average torque and larger torque pulsation. Recently, many researchers have proposed several methods to improve the performance of the motor and drive system. In fact, the SynRM has been shown to be suitable for ac drive systems for several reasons. For example, it is not necessary to compute the slip of the SynRM as it is with the induction motor. As a result, there is no parameter sensitivity problem. In addition, it does not require any permanent magnetic material as the permanent synchronous motor does. The sensorless drive is becoming more and more popular for synchronous reluctance motors. The major reason is that the sensorless drive can save space and reduce cost. Generally speaking, there are two major methods to achieve a sensorless drive system: vector control and direct torque control. Although most researchers focus on vector control for a sensorless synchronous reluctance drive, direct torque control is simpler. By using direct torque control, the plane of the voltage vectors is divided into six or twelve sectors. Then, an optimal switching strategy is defined for each sector. The purpose of the direct torque control is to restrict the torque error and the stator flux error within given hysteresis bands. After executing hysteresis control, a switching pattern is selected to generate the required torque and flux of the motor. A closed-loop drive system is thus obtained. The SRM has wound field coils as in a DC motor for the stator windings. The rotor however has no magnets or coils attached. It is a solid salient-pole rotor (having projecting magnetic poles) made of soft magnetic material (often laminated-steel). When power is applied to the stator windings, the rotor's magnetic reluctance creates a force that attempts to align the rotor pole with the nearest stator pole. In order to maintain rotation, an electronic control system switches on the windings of successive stator poles in sequence so that the magnetic field of the stator "leads" the rotor pole, pulling it forward. Rather than using a troublesome high-maintenance mechanical commutator to switch the winding current as in traditional motors, the switched-reluctance motor uses an electronic position sensor to determine the angle of the rotor shaft and solid state electronics to switch the stator windings, which also offers the opportunity for dynamic control of pulse timing and shaping. This differs from the apparently similar induction motor which also has windings that are energized in a rotating phased sequence, in that the magnetization of the rotor is static (a salient pole that is made 'North' remains so as the motor rotates) while an induction motor has slip, and rotates at slightly less than synchronous speed. This absence of slip makes it possible to know the rotor position exactly, and the motor can be stepped arbitrarily slowly.

BLDC motor Drive and applications in real time systems


Before there were brushless DC motors there were brush DC motors, which were brought on in part to replace the less efficient AC induction motors that came before. The brush DC motor was invented all the way back in 1856 by famed German inventor and industrialist Ernst Werner von Siemens. Von Siemens is so famous that the international standard unit of electrical conductance is named after him. Von Siemens studied electrical engineering after leaving the army and produced many contributions to the world of electrical engineering, including the first electric elevator in 1880. Von Siemens’s brush DC motor was fairly rudimentary and was improved upon by Harry Ward Leonard, who nearly perfected the first effective motor control system near the end of the 19th century. This system used a rheostat to control the current in the field winding, which resulted in adjusting the output voltage of the DC generator, which in turn adjusted the motor speed. The Ward Leonard system remained in place all the way until 1960, when the Electronic Regulator Company’s thyristor devices produced solid state controllers that could convert AC power to rectified DC power more directly. It supplanted the Ward Leonard system due to its simplicity and efficiency. Advent of Brushless DC Motors Once the Electronic Regulator Company maximized the efficiency of the brush DC motor, the door was opened for an even more efficient motor device. Brushless DC motors first made the scene in 1962, when T.G. Wilson and P.H. Trickey unveiled what they called “a DC machine with solid state commutation.” Remember that the key element of brushless DC motors as opposed to brush DC motors is that the brushless DC motor requires no physical commutator, a revolutionary difference. As the device was refined and developed, it became a popular choice for special applications such as computer disk drives, robotics and in aircraft. In fact, brushless DC motors are used in these devices today, fifty years later, so great is their effectiveness. The reason these motors were such a great choice for these devices is that in these devices brush wear was a big problem, either because of the intense demands of the application or, for example, in the case of aircraft because of low humidity. Because brushless DC motors had no brushes that could wear out, they represented a great leap forward in technology for these types of devices. The problem was that as reliable as they were, these early brushless DC motors were not able to generate a great deal of power. Modern Brushless DC Motors That all changed in the 1980s, when permanent magnet materials became readily available. The use of permanent magnets, combined with high voltage transistors, enabled brushless DC motors to generate as much power as the old brush DC motors, if not more. Near the end of the 1980s, Robert E. Lordo of the POWERTEC Industrial Corporation unveiled the first large brushless DC motors, which had at least ten times the power of the earlier brushless DC motors. Today, there are probably no major motor manufacturers that do not produce brushless DC motors capable of high power jobs. Naturally, NMB Tech offers a wide variety of brushless DC motors for you to choose from, in sizes from 15mm in diameter to 65mm in diameter, from 0.7 maximum Watts output to 329.9. If you’re starting a new project that requires motors for its applications, you’ll want to seriously consider using brushless DC motors. Industries with motor needs have relied on brushless DC motors for nearly fifty years, and there is every reason to believe that they will continue to do so for decades to come. Take a look at some brushless DC motors today. The brushless DC (BLDC) motor can be envisioned as a brush DC motor turned inside out, where the permanent magnets are on the rotor, and the windings are on the stator. As a result, there are no brushes and commutators in this motor, and all of the disadvantages associated with the sparking of brush DC motors are eliminated. This motor is referred to as a "DC" motor because its coils are driven by a DC power source which is applied to the various stator coils in a predetermined sequential pattern. This process is known as commutation. However, "BLDC" is really a misnomer, since the motor is effectively an AC motor. The current in each coil alternates from positive to negative during each electrical cycle. The stator is typically a salient pole structure which is designed to produce a trapezoidal back-EMF waveshape which matches the applied commutated voltage waveform as closely as possible. However, this is very hard to do in practice, and the resulting back-EMF waveform often looks more sinusoidal than trapezoidal. For this reason, many of the control techniques used with a PMSM motor (such as Field Oriented Control) can equally be applied to a BLDC motor. Another misconception about the BLDC motor is related to how it is driven. Unlike an open-loop stepper application where the rotor position is determined by which stator coil is driven, in a BLDC motor, which stator coil is driven is determined by the rotor position. The stator flux vector position must be synchronized to the rotor flux vector position (not the other way around) in order to obtain smooth operation of the motor. In order to accomplish this, knowledge of the rotor position is required in order to determine which stator coils to energize. Several techniques exist to do this, but the most popular technique is to monitor the rotor position using hall-effect sensors. Unfortunately, these sensors and their associated connectors and harnesses result in increased system cost, and reduced reliability. In an effort to mitigate these issues, several techniques have been developed to eliminate these sensors, resulting in sensorless operation. Most of these techniques are based upon extracting position information from the back-EMF waveforms of the stator windings while the motor is spinning. However, techniques based on back-EMF sensing fall apart when the motor is spinning slowly or at a standstill, since the back-EMF waveforms are faint or non-existent. As a result, new techniques are constantly being developed which obtain rotor position information from other signals at low or zero speed. BLDC motors reign supreme in efficiency ratings, where values in the mid-nineties percent range are routinely obtained. Current research into new amorphous core materials is pushing this number even higher. Ninety six percent efficiency in the 100W range has been reported. They also compete for the title of fastest motor in the world, with speeds on some motors achieving several hundred thousand RPM (400K RPM reported in one application). The most common BLDC motor topology utilizes a stator structure consisting of three phases. As a result, a standard 6-transistor inverter is the most commonly used power stage, as shown in the diagram. Depending on the operational requirements (sensored vs. sensorless, commutated vs. sinusoidal, PWM vs. SVM, etc.) there are many different ways to drive the transistors to achieve the desired goal, which are too numerous to cover here. This places a significant requirement on the flexibility of the PWM generator, which is typically located in the microcontroller.

Wednesday, 1 April 2015

Superconductivity applications in Power System Engineering


Superconductors differ fundamentally in quantum physics behavior from conventional materials in the manner by which electrons, or electric currents, move through the material. It is these differences that give rise to the unique properties and performance benefits that differentiate superconductors from all other known conductors. Unique Properties • Zero resistance to direct current • Extremely high current carrying density • Extremely low resistance at high frequencies • Extremely low signal dispersion • High sensitivity to magnetic field • Exclusion of externally applied magnetic field • Rapid single flux quantum transfer • Close to speed of light signal transmission Zero resistance and high current density have a major impact on electric power transmission and also enable much smaller or more powerful magnets for motors, generators, energy storage, medical equipment and industrial separations. Low resistance at high frequencies and extremely low signal dispersion are key aspects in microwave components, communications technology and several military applications. Low resistance at higher frequencies also reduces substantially the challenges inherent to miniaturization brought about by resistive, or I2 R, heating. The high sensitivity of superconductors to magnetic field provides a unique sensing capability, in many cases 1000x superior to today’s best conventional measurement technology. Magnetic field exclusion is important in multi-layer electronic component miniaturization, provides a mechanism for magnetic levitation and enables magnetic field containment of charged particles. The final two properties form the basis for digital electronics and high speed computing well beyond the theoretical limits projected for semiconductors. All of these materials properties have been extensively demonstrated throughout the world. In 1911, H. K. Onnes, a Dutch physicist, discovered superconductivity by cooling mercury metal to extremely low temperature and observing that the metal exhibited zero resistance to electric current. Prior to 1973 many other metals and metal alloys were found to be superconductors at temperatures below 23.2K. These became known as Low Temperature Superconductor (LTS) materials. Since the 1960s a Niobium-Titanium (Ni-Ti) alloy has been the material of choice for commercial superconducting magnets. More recently, a brittle Niobium-Tin intermetallic material has emerged as an excellent alternative to achieve even higher magnetic field strength. In 1986, J. G. Bednorz and K. A. Müller discovered 2 Superconductivity: Present and Future Applications © 2009 CCAS : Coalition for the Commercial Application of Superconductors oxide based ceramic materials that demonstrated superconducting properties as high as 35K. This was quickly followed in early 1997 by the announcement by C. W. Chu of a cuprate superconductor functioning above 77K, the boiling point of liquid nitrogen. Since then, extensive research worldwide has uncovered many more oxide based superconductors with potential manufacturability benefits and critical temperatures as high as 135K. A superconducting material with a critical temperature above 23.2K is known as a High Temperature Superconductor (HTS), despite the continuing need for cryogenic refrigeration for any application. Challenges • Cost • Refrigeration • Reliability • Acceptance Forty years of development and commercialization of applications involving LTS materials have demonstrated that a superconductor approach works best when it represents a unique solution to the need. Alternatively, as the cost of the superconductor will always be substantially higher than that of a conventional conductor, it must bring overwhelming cost effectiveness to the system. The advent of HTS has changed the dynamic of refrigeration by permitting smaller and more efficient system cooling for some applications. Design, integration of superconducting and cryogenic technologies, demonstration of systems cost benefits and long term reliability must be met before superconductivity delivers on its current promise of major societal benefits and makes substantial commercial inroads into new applications. About Superconductivity Superconductivity is widely regarded as one of the great scientific discoveries of the 20th Century. This miraculous property causes certain materials, at low temperatures, to lose all resistance to the flow of electricity. This state of “losslessness” enables a range of innovative technology applications. At the dawn of the 21st century, superconductivity forms the basis for new commercial products that are transforming our economy and daily life. Current Commercial Applications • Magnetic Resonance Imaging (MRI) • Nuclear Magnetic Resonance (NMR) • High-energy physics accelerators • Plasma fusion reactors • Industrial magnetic separation of kaolin clay The major commercial applications of superconductivity in the medical diagnostic, science and industrial processing fields listed above all involve LTS materials and relatively high field magnets. Indeed, without superconducting technology most of these applications would not be viable. Several smaller applications utilizing LTS materials have also been commercialized, e.g. research magnets and MagnetoEncephalograhy (MEG). The latter is based on Superconducting Quantum Interference Device (SQUID) technology which detects and measures the weak magnetic fields generated by the brain. The only substantive commercial products incorporating HTS materials are electronic filters used in wireless base stations. About 10,000 units have been installed in wireless networks worldwide to date. More detail on these applications is presented in subsequent sections. Emerging Applications Superconductor-based products are extremely environmentally friendly compared to their conventional counterparts. They generate no greenhouse gases and are cooled by non-flammable liquid nitrogen (nitrogen comprises 80% of our atmosphere) as opposed to conventional oil coolants that are both flammable and toxic. They are also typically at least 50% smaller and lighter than equivalent conventional units which translates into economic incentives. These benefits have given rise to the ongoing development of many new applications in the following sectors: Electric Power. Superconductors enable a variety of applications to aid our aging and heavily burdened electric power infrastructure - for example, in generators, transformers, underground cables, synchronous condensers and fault current limiters. The high power density and electrical efficiency of superconductor wire results in highly compact, powerful devices and systems that are more reliable, efficient, and environmentally benign. Transportation. The rapid and efficient movement of people and goods, by land and by sea, poses important logistical, environmental, land use and other challenges. Superconductors are enabling a new generation of transport technologies including ship propulsion systems, magnetically levitated trains, and railway traction transformers. Medicine. Advances in HTS promise more compact and less costly Magnetic Resonance Imaging (MRI) systems with superior imaging capabilities. In addition, Magneto-Encephalography (MEG), Magnetic Source Imaging (MSI) and MagnetoCardiology (MCG) enable non-invasive diagnosis of brain and heart functionality. Industry. Large motors rated at 1000 HP and above consume 25% of all electricity generated in the United States. They offer a prime target for the use of HTS in substantially reducing electrical losses. Powerful magnets for water remediation, materials purification, and industrial processing are also in the demonstration stages. Communications. Over the past decade, HTS filters have come into widespread use in cellular communications systems. They enhance signal-to-noise ratios, enabling reliable service with fewer, more widely-spaced cell towers. As the world moves from analog to all digital communications, LTS chips offer dramatic performance improvements in many commercial and military applications. Scientific Research. Using superconducting materials, today’s leading-edge scientific research facilities are pushing the frontiers of human knowledge - and pursuing breakthroughs that could lead to new techniques ranging from the clean, abundant energy from nuclear fusion to computing at speeds much faster than the theoretical limit of silicon technology. Since 10% to 15% of generated electricity is dissipated in resistive losses in transmission lines, the prospect of zero loss superconducting transmission lines is appealing. In prototype superconducting transmission lines at Brookhaven National Laboratory, 1000 MW of power can be transported within an enclosure of diameter 40 cm. This amounts to transporting the entire output of a large power plant on one enclosed transmission line. This could be a fairly low voltage DC transmission compared to large transformer banks and multiple high voltage AC transmission lines on towers in the conventional systems. The superconductor used in these prototype applications is usually niobium-titanium, and liquid helium cooling is required. Current experiments with power applications of high-temperature superconductors focus on uses of BSCCO in tape forms and YBCOin thin film forms. Current densities above 10,000 amperes per square centimeter are considered necessary for practical power applications, and this threshold has been exceeded in several configurations.

Monday, 9 March 2015

Design of marine half-ship electrical power system with base load, hotel load, bow thrusters and electric propulsion


The principal components of the system are: 30 MVA Gas Turbine, Round Rotor Alternator 5 MVA Diesel Generator, Salient Pole Alternator 11.5 MVA Base Load 6 MVA Switched Hotel Load 20 MVA Average-Value Propulsion Rectifier 1 MVA Direct Online Start, Squirrel Cage Bow Thrusters
The sequence of events during the simulation is: 10 seconds - Hotel Load disconnected 20 seconds - Propulsion begins ramping up 30 seconds - Full power ahead 40 seconds - Propulsion begins ramping down 50 seconds - Bow Thrusters start up 60 seconds - Hotel Load connected